Expression of the curculin gene from different organs of Curculigo latifolia under different culture conditions
DOI:
https://doi.org/10.33503/ebio.v10i01.1131Keywords:
Curculin gene, Curculigo latifolia, in vitro, in vivoAbstract
Curculigo latifolia is the main source of curculin. Curculin is a special kind of protein that tastes sweet and can change the way food tastes, and is naturally expressed in fruit. This study aims to measure and compare the relative expression of the curculin gene in different organs, i.e., fruit and leaf, under in vitro and in vivo conditions. In this study, mRNA isolation was carried out in tissues derived from fruits and leaves grown in vitro and in vivo (in the soil) of C. latifolia from West Java, Indonesia. Leaves from 20 weeks seedling on polybag, fruit 40 days after anthesis, and leaves from 20 weeks seedling of C. latifolia cultured on MS0 medium that were used in this experiment. The relative expression was measured using qRT-PCR. The results showed that the comparison of curculigo’s parts in the leaves was lower than in the fruit. The lowest expression was obtained in leaves grown under in vitro conditions at 0.001-fold, while leaves grown in the soil at 0.566-fold compared to curculin gene expression in fruit. This study concludes that the expression of the Curculin gene in fruit is different between the fruit and leaves, and the growth conditions have an influence on Curculin gene expression, where Curculin gene expression under in vitro conditions is lower than expression under in vivo conditions. The curculin is not only expressed in the fruit but also the leaves, so it has the potential to be developed.
References
Abe, K., Yamashita, H., Arai, S., & Kurihara, Y. (1992). Molecular cloning of curculin, a novel taste-modifying protein with a sweet taste. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, 1130(2), 232–234. https://doi.org/10.1016/0167-4781(92)90537-A
Anton, S. D., Martin, C. K., Han, H., Coulon, S., Cefalu, W. T., Geiselman, P., & Williamson, D. A. (2010). Effects of stevia, aspartame, and sucrose on food intake, satiety, and postprandial glucose and insulin levels. Appetite, 55(1), 37–43. https://doi.org/10.1016/j.appet.2010.03.009
Babaei, N., Ashikin, N., Abdullah, P., Saleh, G., & Abdullah, T. L. (2013). Control of contamination and explant browning in Curculigo latifolia in vitro cultures. Journal of Medicinal Plants Research, 7(8): 448–454. https://www.researchgate.net/publication/257933792
Babaei, N., Psyquay Abdullah, N. A., Saleh, G., & Lee Abdullah, T. (2014). An efficient in vitro plantlet regeneration from shoot tip cultures of Curculigo latifolia, a medicinal plant. The Scientific World Journal, 2014. https://doi.org/10.1155/2014/275028
Bazin, J., Khan, G. A., Combier, J., Bustos‐Sanmamed, P., Debernardi, J. M., Rodriguez, R., Sorin, C., Palatnik, J., Hartmann, C., Crespi, M., & Lelandais‐Brière, C. (2013). miR396 affects mycorrhization and root meristem activity in the legume Medicago truncatula. The Plant Journal, 74(6), 920–934. https://doi.org/10.1111/tpj.12178
Bistara, D. N., Wardani, E. M., Susanti, Santoso, A. P. R., Fasya, A. H. Z., & Andini, A. (2022). The effect of discharge planning on the stability of blood sugar levels in type 2 diabetes mellitus patients. Bali Medical Journal, 11(3), 1180–1184. https://doi.org/10.15562/bmj.v11i3.3537
Borah, P. (2011). Primer designing for PCR. Science Vision, 11(3), 134–136. https://www.sciencevision.org/issue/33/article/221
Farzinebrahimi, R., Mat Taha, R., Rashid, K. A., Ali Ahmed, B., Danaee, M., & Rozali, S. E. (2016). Preliminary Screening of Antioxidant and Antibacterial Activities and Establishment of an Efficient Callus Induction in Curculigo latifolia Dryand (Lemba). Evidence-Based Complementary and Alternative Medicine, 2016(4), 1-9. https://doi.org/10.1155/2016/6429652
Kristanto, Y., & Hartono, A. R. (2021). Anti-diabetic properties of Stevia rebaudiana Bertoni as sugar substitute: a mini-review. Bali Medical Journal, 10(1), 189–193. https://doi.org/10.15562/bmj.v10i1.2259
Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25(4), 402–408. https://doi.org/10.1006/meth.2001.1262
McClintock, B. (1984). The significance of responses of the genome to challenge. Science, 226(4676), 792–801. https://doi.org/10.1126/science.15739260
Muslihatin, W., Saputro, T.B., Wibowo, A.T., Manuhara, Y.S.W. 2024. Assesment of genetic stability of micropropagated Curculigo latifolia from Indonesia by RAPD and ISSR. Journal of Applied Biology and Biotechnology,13(1): 229–234. https://doi.org/10.7324/JABB.2024.190563
Muslihatin, W., Jadid, N., Manuhara, Y. S. W., & Werbrouck, S. P. O. (2023). Effect of light on seed germination and growth of Curculigo latifolia in in vitro condition. Acta Horticulturae, 1359, 105–112. https://doi.org/10.17660/ActaHortic.2023.1359.12
Neelakandan, A. K., & Wang, K. (2012). Recent progress in the understanding of tissue culture-induced genome level changes in plants and potential applications. Plant Cell Reports, 31(4), 597–620. https://link.springer.com/article/10.1007/s00299-011-1202-z
Nookaraju, A., Upadhyaya, C. P., Pandey, S. K., Young, K. E., Hong, S. J., Park, S. K., & Park, S. W. (2010). Molecular approaches for enhancing sweetness in fruits and vegetables. Scientia Horticulturae, 127(1), 1–15. https://doi.org/10.1016/j.scienta.2010.09.014
Okubo, S., Terauchi, K., Okada, S., Saito, Y., Yamaura, T., Misaka, T., Nakajima, K., Abe, K., & Asakura, T. (2021). De novo transcriptome analysis and comparative expression profiling of genes associated with the taste-modifying protein neoculin in Curculigo latifolia and Curculigo capitulata fruits. BMC Genomics, 22(1), 347. https://doi.org/10.1186/s12864-021-07674-3
Raden, I., Nugroho, C. C., & Syahrani, S. (2017). Identification and characterization of morphological diversity of Lemba (Curculigo latifolia) in East Kalimantan, Indonesia. Biodiversitas Journal of Biological Diversity, 18(4), 1367–1376. https://doi.org/10.13057/biodiv/d180412
Ramírez-Tejero, J. A., Jiménez-Ruiz, J., Leyva-Pérez, M. de la O., Barroso, J. B., & Luque, F. (2020). Gene expression pattern in olive tree organs (Olea europaea L.). Genes, 11(5), 544. https://doi.org/10.3390/genes11050544
Riechmann, J. L. (2002). Transcriptional regulation: a genomic overview. The Arabidopsis Book/American Society of Plant Biologists, 1. https://pmc.ncbi.nlm.nih.gov/articles/PMC3243377/
Rohmawati, R., Wijayanti, L., Sari, R. Y., Faizah, I., & Anggraini, R. (2023). Mindfulness eating based on spiritual interventions on diet compliance and blood sugar levels in type 2 DM patients. Bali Medical Journal, 12(2), 1948–1952. https://doi.org/10.15562/bmj.v12i2.4317
Russel, D. W., & Sambrook, J. (2001). Molecular cloning: a laboratory manual (Vol. 1). Cold Spring Harbor Laboratory.
Sari, R. Y., Hatmanti, N. M., Faizah, I., Rohmawati, R., Muhith, A., & Afiyah, R. K. (2023). Spiritual diabetes self-management health coaching on self-efficacy, self-care, and blood glucose levels in type 2 diabetes mellitus patients. Bali Medical Journal, 12(3), 2768–2773. https://doi.org/10.15562/bmj.v12i3.4440
Suzuki, M., Kurimoto, E., Nirasawa, S., Masuda, Y., Hori, K., Kurihara, Y., Shimba, N., Kawai, M., Suzuki, E., & Kato, K. (2004). Recombinant curculin heterodimer exhibits taste‐modifying and sweet‐tasting activities. FEBS Letters, 573(1–3), 135–138. https://doi.org/10.1016/j.febslet.2004.07.073
Umar, A. H., Ratnadewi, D., Rafi, M., Sulistyaningsih, Y. C., & Hamim, H. 2021. Callus of Curculigo latifolia Dryand. ex W.T. Aiton: Initiation, regeneration, secretory structure and histochemistry. IOP Conference Series: Earth and Environmental Science, 948(1). https://doi.org/10.1088/1755-1315/948/1/012051
Wang, C., & Ning, P. (2019). Post-silking phosphorus recycling and carbon partitioning in maize under low to high phosphorus inputs and their effects on grain yield. Frontiers in Plant Science, 10. https://doi.org/10.3389/fpls.2019.00784
Xiaoxia, L., Jianguo, Z., Ying, L., & Guodong, R. (2020). Metabolome and transcriptome analyses reveal tissue-specific variations in gene expression and metabolites of olive. Journal of Plant Biology, 63(1), 73–82. https://doi.org/10.1007/s12374-020-09231-z
Yamashita, H., Akabane, T., & Kurihara, Y. 1995. Activity and stability of a new sweet protein with taste-modifying action, Curculin. Chemical Senses, 20(2): 239–243. https://doi.org/10.1093/chemse/20.2.239
Yamashita, H., Theerasilp, S., Aiuchi, T., Nakaya, K., Nakamura, Y., & Kurihara, Y. (1990). Purification and complete amino acid sequence of a new type of sweet protein taste-modifying activity, curculin. J Biol Chem, 26(265), 15770–15775. https://www.researchgate.net/publication/20760842
Yang, F., Lu, C., Wei, Y., Wu, J., Ren, R., Gao, J., Ahmad, S., Jin, J., Xv, Y., Liang, G., & Zhu, G. (2022). Organ-specific gene expression reveals the role of the Cymbidium ensifolium-miR396/growth-regulating factors module in flower development of the orchid plant Cymbidium ensifolium. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.799778
Yaschenko, A. E., Fenech, M., Mazzoni-Putman, S., Alonso, J. M., & Stepanova, A. N. (2022). Deciphering the molecular basis of tissue-specific gene expression in plants: Can synthetic biology help? Current Opinion in Plant Biology, 68, 102241. https://doi.org/10.1016/j.pbi.2022.102241
Downloads
Published
How to Cite
Issue
Section
Citation Check
License
Copyright (c) 2025 Edubiotik : Jurnal Pendidikan, Biologi dan Terapan

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.