Fatty acid profile analysis of Chlorella vulgaris under salinity and cadmium stress: Feedstock characterization for biodiesel suitability

Authors

  • Dini Ermavitalini Doctoral Program of Mathematics and Natural Science, Airlangga University, Surabaya, Indonesia
  • Etika Ziadana Al Husna Department of Biology, Sepuluh Nopember Institute of Technology, Surabaya, Indonesia
  • Anisa Esti Rahayu Department of Biology, Sepuluh Nopember Institute of Technology, Surabaya, Indonesia
  • Ratna Syifa’a Rahmahana Department of Biology, Sepuluh Nopember Institute of Technology, Surabaya, Indonesia
  • Rofiatun Solekha Department of Biology, Muhammadiyah University of Lamongan, Lamongan, Indonesia
  • Hery Purnobasuki Department of Biology, Airlangga University, Surabaya, Indonesia
  • Ni’matuzahroh Ni’matuzahroh Department of Biology, Airlangga University, Surabaya, Indonesia

DOI:

https://doi.org/10.33503/ebio.v10i01.1261

Keywords:

Biodiesel, cadmium, Chlorella vulgaris, fatty acids, salinity

Abstract

Cultivation of microalgae Chlorella vulgaris under salinity and heavy metal stress can affect the type and quantity of fatty acids in its cells. This study aims to analyze the fatty acid profile of microalgae C. vulgaris InaCCM49 cultivated in media containing 0.6 M NaCl and 95 µM CdCl2 based on the suitability of biodiesel raw material standards. The study began with determining the starter time of microalgae C. vulgaris InaCCM49 culture, cultivation in salinity and cadmium stress medium, determining the growth phase of treatment and control, biomass extraction for metabolomics analysis, UPLC-MS/MS, fatty acid classification using LIPID MAPS Structure Database (LMSD), and analysis of biodiesel quality standards based on ASTM D6751 and EN14214 which include cetane number (CN), saponification value (SV), cold filter plugging point (CFFP), degree of unsaturation (DU), iodine value (IV) and long-chain saturated factor (LCSF). The results showed an increase in the degree of monounsaturated fatty acids (MUFA) by 10.7 % and a decrease in polyunsaturated fatty acids (PUFA) by 36.71% which played a role in the stability of biodiesel compared to the control treatment. The results of the analysis of CN, IV, and CFPP were respectively 55.4, 59, and -16.5. This shows that the composition of fatty acids formed in the microalgae extract C. vulgaris InaCCM49 with salinity and cadmium stress treatment (0.6 M NaCl, 95 µM CdCl2) has the potential to be a source of quality biodiesel raw materials.

References

Al-Lwayzy, S., Yusaf, T., & Al-Juboori, R. (2014). Biofuels from the fresh water microalgae Chlorella vulgaris (FWM-CV) for diesel engines. Energies, 7(3), 1829–1851. https://doi.org/10.3390/en7031829

Algburi, J. B., Ridha, A. M. A. A., Qazmooz, H. A., Ayad, G., & Mushtaq, F. (2024). Biochemical influence of (Chlorella vulgaris) exposure to heavy elements stress. Journal of Survey in Fisheries Sciences, 10(3S), 1789-1797. https://www.researchgate.net/publication/377111454

Annamalai, J., Shanmugam, J., & Nallamuthu, T. (2016). Salt stress enhancing the production of phytochemicals in Chlorella vulgaris and Chlamydomonas reinhardtii. J. Algal Biomass Utln, 7(1), 37-44. https://www.researchgate.net/publication/334538029

Bamgboye, A. I. & Hansen, A. C. (2008). Prediction of cetane number of biodiesel fuel from the fatty acid methyl ester (FAME) composition. Int. Agrophysics, 22, 21–29. https://www.researchgate.net/publication/26551829

Barten, R., Kleisman, M., D’Ermo, G., Nijveen, H., Wijfels, R. H., & Barbosa, M. J. (2022). Short term physiologic response of the green microalga Picochlorum sp. (BPE23) to supra optimal temperature. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-06954-6

Brennan, L., & Owende, P. (2009). Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 14(2), 557–577. https://doi.org/10.1016/j.rser.2009.10.009

Carfagna, S., Lanza, N., Salbitani, G., Basile, A., Sorbo, S., & Vona, V. (2013). Physiological and morphological responses of lead or cadmium exposed Chlorella sorokiniana 211-8K (Chlorophyceae). SpringerPlus, 2(1). https://doi.org/10.1186/2193-1801-2-147

Chia, M. A., Lombardi, A. T., Da GraÇa Gama Melão, M., & Parrish, C. C. (2013). Effects of cadmium and nitrogen on lipid composition of Chlorella vulgaris (Trebouxiophyceae, Chlorophyta). European Journal of Phycology, 48(1), 1–11. https://doi.org/10.1080/09670262.2012.750687

Ding, L., Ma, Y., Huang, B., & Chen, S. (2013). Effects of seawater salinity and temperature on growth and pigment contents in Hypnea cervicornis J. Agardh (Gigartinales, Rhodophyta). BioMed Research International, 2013, 1–10. https://doi.org/10.1155/2013/594308

El-Sheekh, M. M., Galal, H. R., Mousa, A. S. H., & Farghl, A. a. M. (2024). Impact of macronutrients and salinity stress on biomass and biochemical constituents in Monoraphidium braunii to enhance biodiesel production. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-53216-8

Farag, M. R., Alagawany, M., Mahdy, E. a. A., El-Hady, E., Abou-Zeid, S. M., Mawed, S. A., Azzam, M. M., Crescenzo, G., & Abo-Elmaaty, A. M. A. (2023). Benefits of Chlorella vulgaris against cadmium chloride-induced hepatic and renal toxicities via restoring the cellular redox homeostasis and modulating Nrf2 and NF-KB pathways in male rats. Biomedicines, 11(9), 2414. https://doi.org/10.3390/biomedicines11092414

Francisco, É. C., Neves, D. B., Jacob-Lopes, E., & Franco, T. T. (2010). Microalgae as feedstock for biodiesel production: Carbon dioxide sequestration, lipid production, and biofuel quality. Journal of Chemical Technology & Biotechnology, 85(3), 395–403. https://doi.org/10.1002/jctb.2338

Garcia, L. (2012). The promises of Chlorella vulgaris as the best alternative for biodiesel: A review. Journal of Nature Studies, 11(1&2): 102-123. https://kipdf.com/the-promises-of-chlorella-vulgaris-as-the-best-alternative-for-biodiesel-a-revie_5ab36d6d1723dd349c8141a9.html

Gonzalez-Esquer, C. R., Wright, K. T., Sudasinghe, N., Carr, C. K., Sanders, C. K., Turmo, A., Kerfeld, C. A., Twary, S., & Dale, T. (2019). Demonstration of the potential of Picochlorum soloecismus as a microalgal platform for the production of renewable fuels. Algal Research, 43, 101658. https://doi.org/10.1016/j.algal.2019.101658

Hawrot-Paw, M., Ratomski, P., Koniuszy, A., Golimowski, W., Teleszko, M., & Grygier, A. (2021). Fatty acid profile of microalgal oils as a criterion for selection of the best feedstock for biodiesel production. Energies, 14(21), 7334. https://doi.org/10.3390/en14217334

Lamaisri, C., Punsuvon, V., Chanprame, S., Arunyanark, A., Srinives, P., & Liangsakul, P. (2015). Relationship between fatty acid composition and biodiesel quality for nine commercial palm oils. DOAJ (DOAJ: Directory of Open Access Journals). https://doaj.org/article/6b3f36ffeed94652a61c261cc5ab6ec4

Lin, C., & Wu, X. (2022). Determination of cetane number from fatty acid compositions and structures of biodiesel. Processes, 10(8), 1502. https://doi.org/10.3390/pr10081502

Mallick, N., Bagchi, S. K., Koley, S., & Singh, A. K. (2016). Progress and challenges in microalgal biodiesel production. Front. Microbiol, 7, 1019. https://doi.org/10.3389/fmicb.2016.01019

Mata, T. M., Martins, A. A., & Caetano, N. S. (2009). Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, 14(1), 217–232. https://doi.org/10.1016/j.rser.2009.07.020

Menon, K. R., Balan, R., & Suraishkumar, G. (2013). Stress induced lipid production in Chlorella vulgaris: Relationship with specific intracellular reactive species levels. Biotechnology and Bioengineering, 110(6), 1627–1636. https://doi.org/10.1002/bit.24835

Mohammadi, M., & Azizollahi-Aliabadi, M. (2013). Biodiesel production from microalgae. Journal of Biology and Today S World, 2(2). https://www.iomcworld.org/articles/biodiesel-production-from-microalgae.pdf

Nowicka, B. (2022). Heavy metal–induced stress in eukaryotic algae—mechanisms of heavy metal toxicity and tolerance with particular emphasis on oxidative stress in exposed cells and the role of antioxidant response. Environmental Science and Pollution Research, 29(12), 16860–16911. https://doi.org/10.1007/s11356-021-18419-w

Ouyang, H., Kong, X., He, W., Qin, N., He, Q., Wang, Y., Wang, R., & Xu, F. (2012). Effects of five heavy metals at sub-lethal concentrations on the growth and photosynthesis of Chlorella vulgaris. Chinese Science Bulletin, 57(25), 3363–3370. https://doi.org/10.1007/s11434-012-5366-x

Pandit, P. R., Fulekar, M. H., & Karuna, M. S. L. (2017). Effect of salinity stress on growth, lipid productivity, fatty acid composition, and biodiesel properties in Acutodesmus obliquus and Chlorella vulgaris. Environmental Science and Pollution Research, 24(15), 13437–13451. https://doi.org/10.1007/s11356-017-8875-y

Park S, Nguyen THT, Jin E. (2019). Improving lipid production by strain development in microalgae: Strategies, challenges and perspectives. Bioresour Technol. 292:121953. https://doi.org/10.1016/j.biortech.2019.121953

Patnaik, R., & Mallick, N. (2021). Microalgal biodiesel production: Realizing the sustainability index. Frontiers in Bioengineering and Biotechnology, 9. https://doi.org/10.3389/fbioe.2021.620777

Rachlin, J. W., & Grosso, A. (1991). The effects of pH on the growth of Chlorella vulgaris and its interactions with cadmium toxicity. Archives of Environmental Contamination and Toxicology, 20(4), 505–508. https://doi.org/10.1007/bf01065839

Rafa, N., Ahmed, S. F., Badruddin, I. A., Mofijur, M., & Kamangar, S. (2021). Strategies to produce cost-effective third-generation biofuel from microalgae. Frontiers in Energy Research, 9. https://doi.org/10.3389/fenrg.2021.749968

Ranjbar, S., & Malcata, F. X. (2022). Is genetic engineering a route to enhance microalgae-mediated bioremediation of heavy metal-containing effluents? Molecules, 27(5), 1473. https://doi.org/10.3390/molecules27051473

Rosyadi, Dahril, T., Mulyadi, A., Siregar, S. H., Windarti. (2022). Growth of Chlorella sp. reared in a leachate enriched media. AACL Bioflux, 15(4), 1899-1907. https://www.bioflux.com.ro/docs/2022.1899-1907.pdf

Sari, L. A., Aurelia, T. S., Chrisrendra, D. J., Ichmaha, V., Samara, S. H., Arsad, S., & Musa, N. (2024). Kepadatan, diameter, laju pertumbuhan, klorofil a dan lipid Chlorella Vulgaris pada fermentasi tauge kacang hijau (Phaseolus radiatus). Jurnal Perikanan Unram, 14(3), 1170–1184. https://doi.org/10.29303/jp.v14i3.917

Shi, T., Wang, L., Zhang, Z., Sun, X., & Huang, H. (2020). Stresses as first-Line tools for enhancing lipid and carotenoid production in microalgae. Frontiers in Bioengineering and Biotechnology, 8. https://doi.org/10.3389/fbioe.2020.00610

Shim, J. A., Son, Y. A., Park, J. M., & Kim, M. K. (2009). Effect of Chlorella intake on cadmium metabolism in rats. Nutrition Research and Practice, 3(1), 15. https://doi.org/10.4162/nrp.2009.3.1.15

Song, X., Kong, F., Liu, B., Song, Q., Ren, N., & Ren, H. (2024). Lipidomics analysis of microalgal lipid production and heavy metal adsorption under glycine betaine-mediated alleviation of low-temperature stress. Journal of Hazardous Materials, 480, 135831. https://doi.org/10.1016/j.jhazmat.2024.135831

Wahlen, B. D., Morgan, M. R., McCurdy, A. T., Willis, R. M., Morgan, M. D., Dye, D. J., Bugbee, B., Wood, B. D., & Seefeldt, L. C. (2012). Biodiesel from microalgae, yeast, and bacteria: Engine performance and exhaust emissions. Energy & Fuels, 27(1), 220–228. https://doi.org/10.1021/ef3012382

Wahyu, D., Hindarti, D., & Permana, R. (2020). Cadmium toxicity towards marine diatom Thalassiosira sp. and its alteration on chlorophyll-a and carotenoid content. World News of Natural Sciences, 31, 48–57. http://psjd.icm.edu.pl/psjd/element/bwmeta1.element.psjd-a294e8d0-893f-4d27-a9e8-d3ceb7f5d7ca/c/WNOFNS_31__2020__48-57.pdf

Yun, C., Hwang, K., Han, S., & Ri, H. (2019). The effect of salinity stress on the biofuel production potential of freshwater microalgae Chlorella vulgaris YH703. Biomass and Bioenergy, 127, 105277. https://doi.org/10.1016/j.biombioe.2019.105277

Yusuf, N., Athirah, N. M., & A, S. (2022). Antioxidative responses of Chlorella vulgaris Under different growth phases. SQUALEN Bulletin of Marine and Fisheries Postharvest and Biotechnology, 17(3), 111–120. https://doi.org/10.15578/squalen.692

Zhang, Y., Zhong, Y., Lu, S., Zhang, Z., & Tan, D. (2022). A comprehensive review of the properties, performance, combustion, and emissions of the diesel engine fueled with different generations of biodiesel. Processes, 10(6), 1178. https://doi.org/10.3390/pr10061178

Zsiros, O., Nagy, G., Patai, R., Solymosi, K., Gasser, U., Polgár, T. F., Garab, G., Kovács, L., & Hörcsik, Z. T. (2020). Similarities and differences in the effects of toxic concentrations of cadmium and chromium on the structure and functions of thylakoid membranes in Chlorella variabilis. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.01006

Downloads

Published

2025-07-04

How to Cite

[1]
Ermavitalini, D. et al. 2025. Fatty acid profile analysis of Chlorella vulgaris under salinity and cadmium stress: Feedstock characterization for biodiesel suitability. Edubiotik : Jurnal Pendidikan, Biologi dan Terapan. 10, 01 (Jul. 2025), 93–109. DOI:https://doi.org/10.33503/ebio.v10i01.1261.

Citation Check