Characterization of soil pathogenic fungi in the rhizosphere of siwalan palm (Borassus flabellifer L.)
DOI:
https://doi.org/10.33503/ebio.v10i02.2156Keywords:
Aspergillus, identification, morphological, pathogenic fungi, siwalanAbstract
Soil-borne fungal pathogens represent a persistent threat to plant health due to their ability to colonize the rhizosphere and infect root systems, yet information on their diversity in non-industrial palm species remains limited. Siwalan (Borassus flabellifer L.) is a drought-tolerant palm of ecological and socio-economic importance, but its rhizospheric fungal communities have not been systematically characterized. This study aimed to (1) isolate soil-borne fungi from the rhizosphere of siwalan and (2) identify potential pathogenic fungi based on macroscopic and microscopic morphological characteristics. Rhizosphere soil samples were collected at depths of 5–20 cm and processed using the soil dilution plate method. Fungal isolates were cultured on potato dextrose agar (PDA), purified through subculturing, and identified using colony morphology and microscopic structures observed through slide culture and lactophenol cotton blue staining. Data were analyzed descriptively by comparing fungal traits with standard taxonomic determination keys. Five soil-borne fungal taxa were successfully isolated and identified, namely Aspergillus flavus, Trichoderma longibrachiatum, Aspergillus oryzae, Aspergillus caelatus, and Aspergillus niger. The isolates exhibited distinct differences in colony pigmentation, growth rate, hyphal structure, vesicle morphology, and conidial characteristics. Among them, A. niger showed the fastest radial growth and highest sporulation intensity, whereas T. longibrachiatum and A. oryzae exhibited relatively slower growth. These morphological variations indicate functional diversity and differing adaptive strategies among fungi inhabiting the siwalan rhizosphere. This study provides the first systematic morphological baseline of soil-borne fungi associated with the rhizosphere of B. flabellifer. The findings contribute novel information on fungal diversity in an underexplored palm species and highlight the importance of early fungal characterization as a foundation for future molecular identification, pathogenicity testing, and the development of sustainable disease management strategies for siwalan cultivation systems.
References
Alfaro-García, R. G., Méndez-Bravo, A., & Reverchon, F. (2026). Modulation of the rhizosphere microbiome by soil-borne pathogens: Digging into the pathobiome concept. Annals of Applied Biology, 188(1), 22–33. https://doi.org/10.1111/aab.70046
Balajee, S. A., & Brandt, M. E. (2022). Aspergillus and Penicillium. In Manual of Clinical Microbiology: Tenth Edition (Vols. 2–2, pp. 1836–1852). https://doi.org/10.1128/9781555816728.ch117
Campbell, C. K., Johnson, E. M., & Warnock, D. W. (2013). Identification of pathogenic fungi. In Identification of Pathogenic Fungi. John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118520055
Ding, Z.-J., Qi, Y.-X., Zeng, F.-Y., Peng, J., Xie, Y.-X., & Zhang, X. (2019). Amino sugar metabolism pathway involved in chlamydospore formation of Fusarium oxysporum f. sp. cubense. Mycosystema, 38(4), 485–493. https://manu40.magtech.com.cn/Jwxb/CN/10.13346/j.mycosystema.180279
Guo, Y., & Ji, H. (2021). Growth modeling kinetics of Aspergillus flavus in dried jujube at different temperatures. Journal of Pure and Applied Microbiology, 15(4), 1873–1881. https://doi.org/10.22207/JPAM.15.4.08
Gyeltshen, J., Dunstan, W. A., Grigg, A. H., Burgess, T. I., & St. J. Hardy, G. E. (2021). The influence of time, soil moisture and exogenous factors on the survival potential of oospores and chlamydospores of Phytophthora cinnamomi. Forest Pathology, 51(1). https://doi.org/10.1111/efp.12637
Katan, J. (2017). Diseases caused by soilborne pathogens: Biology, management and challenges. Journal of Plant Pathology, 99(2), 305–315. https://www.jstor.org/stable/44686775
Legrifi, I., Taoussi, M., Al Figuigui, J., Lazraq, A., Hussain, T., & Lahlali, R. (2023). Oomycetes root rot caused by Pythium spp. and Phytophthora spp.: Host range, detection, and management strategies, special case of olive trees. Gesunde Pflanzen. https://doi.org/10.1007/s10343-023-00946-w
Lin, C.-G., Hyde, K. D., Feng, Y., Xiao, Y.-P., Liu, N.-G., Lu, Y.-Z., Luo, Z.-L., & Liu, J.-K. (2025). Notes, outline, systematics and phylogeny of hyaline-spored hyphomycetes. Fungal Diversity. https://doi.org/10.1007/s13225-025-00561-2
Lücking, R., Aime, M. C., Robbertse, B., Miller, A. N., Ariyawansa, H. A., Aoki, T., Cardinali, G., Crous, P. W., Druzhinina, I. S., Geiser, D. M., Hawksworth, D. L., Hyde, K. D., Irinyi, L., Jeewon, R., Johnston, P. R., Kirk, P. M., Malosso, E., May, T. W., Meyer, W., … Schoch, C. L. (2020). Unambiguous identification of fungi: Where do we stand and how accurate and precise is fungal DNA barcoding? IMA Fungus, 11(1). https://doi.org/10.1186/s43008-020-00033-z
Mageshwaran, V., Gupta, R., Sahu, P. K., Tripathi, P., & Vishwakarma, R. (2022). Potential of bacterial endophytes in biological control of soil-borne phytopathogens. In Microorganisms for Sustainability (Vol. 40, pp. 153–173). https://doi.org/10.1007/978-981-19-5872-4_8
Mustofa, A., & Hastuti, U. S. (2024). Antagonism and mycoparasitism mechanism of T. harzianum against pathogenic fungus species of F. oxysporum and Capnodium sp. Inornatus: Biology Education Journal, 4(1), 1–10. https://doi.org/10.30862/inornatus.v4i1.581
Osowski, J., & Urbanowicz, J. (2023). Dry rot of tubers – agents, symptoms, and control. Progress in Plant Protection, 63(3), 137–148. https://doi.org/10.14199/PPP-2023-015
Paliwal, K., Jajoo, A., Tomar, R. S., Prakash, A., Syed, A., Bright, J. P., & Sayyed, R. Z. (2023). Enhancing biotic stress tolerance in soybean affected by rhizoctonia solani root rot through an integrated approach of biocontrol agent and fungicide. Current Microbiology, 80(9). https://doi.org/10.1007/s00284-023-03404-y
Prameeladevi, T., Prabhakaran, N., Kamil, D., Toppo, R. S., & Tyagi, A. (2018). Trichoderma pseudokoningii identified based on morphology was re-identified as T. longibrachiatum through molecular characterization. Indian Phytopathology, 71(4), 579–587. https://doi.org/10.1007/s42360-018-0067-2
Qi, Y.-X., Xie, Y.-X., Peng, J., Zeng, F.-Y., & Zhang, X. (2024). Banana rhizosphere microecology and its relationship with Fusarium wilt control. Biotechnology Bulletin, 40(6), 57–67. https://cdn.sciengine.com/doi/10.13560/j.cnki.biotech.bull.1985.2023-1222
Qu, X., Zhang, J., Duan, Y., Zhou, W., & He, P. (2025). Optimized fertilization for effective suppression of soil-borne disease: Differential effects on bulk and rhizosphere soils. Field Crops Research, 322. https://doi.org/10.1016/j.fcr.2024.109725
Ramzan, U., Abid, K., Zafar, M. A., Anwar, A. M., Nadeem, M., Tanveer, U., & Fatima, U. (2023). Trichoderma: Multitalented Biocontrol Agent. International Journal of Agriculture and Biosciences, 12(2), 77–82. https://doi.org/10.47278/journal.ijab/2023.047
Segers, F. J. J., Wösten, H. A. B., & Dijksterhuis, J. (2018). Aspergillus niger mutants affected in conidial pigmentation do not have an increased susceptibility to water stress during growth at low water activity. Letters in Applied Microbiology, 66(3), 238–243. https://doi.org/10.1111/lam.12846
Simes, M. F., Santos, C., & Lima, N. (2013). Structural diversity of aspergillus (section nigri) spores. Microscopy and Microanalysis, 19(5), 1151–1158. https://doi.org/10.1017/S1431927613001712
Sonavane, P., Venkataravanappa, V., Krishna Reddy, M., & Pavithra, R. S. (2023). Occurrence of Phytophthora nicotianae causing collar and root rot disease of Chrysanthemum in India. Environment Conservation Journal, 24(1), 217–224. https://doi.org/10.36953/ECJ.11922310
Song, X., Huang, L., Li, Y., Zhao, C., Tao, B., & Zhang, W. (2022). Characteristics of soil fungal communities in soybean rotations. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.926731
Teh, L. Y., & Latiffah, Z. (2018). Microscopic characteristics as preliminary identification of Aspergillus spp. from beach sand. Malaysian Journal of Microscopy, 14(1), 28–37. https://malaysianjournalofmicroscopy.org/ojs/index.php/mjm/article/view/45
Vieira, J. B., Rocha, L. S., Silva, H. S. A., & Laranjeira, F. F. (2022). Survival mechanisms of Fusarium oxysporum f. sp. passiflorae are affected by application of cabbage and cassava debris1. Revista Caatinga, 35(3), 586–594. https://doi.org/10.1590/1983-21252022v35n309rc
Wong, S., Muharam, F. M., Rashed, O., & Ahmad, K. (2021). Soil fungal composition and diversity in oil palm plantation at sungai Asap, Sarawak, Malaysia. Journal of Oil Palm Research, 33(2), 215–226. https://doi.org/10.21894/jopr.2021.0014
Yusufu, A., Aizezi, Z., Nuermaimaiti, X., Liu, Y., & Wang, X. (2025). Molecular identification of Aspergillus species, antifungal susceptibility, and phenotypic identification of azole-resistant mutations in cyp51a gene isolated from Xinjiang. Infection and Drug Resistance, 18(April), 1699–1711. https://doi.org/10.2147/IDR.S496489
Zhang, L., Yang, Y., Zhao, Z., Feng, Y., Bate, B., Wang, H., Li, Q., & Cui, J. (2024). Maize–Soybean Rotation and Intercropping Increase Maize Yield by Influencing the Structure and Function of Rhizosphere Soil Fungal Communities. Microorganisms, 12(8). https://doi.org/10.3390/microorganisms12081620
Zulkifli, N. A., & Zakaria, L. (2017). Morphological and molecular diversity of Aspergillus from corn grain used as livestock feed. HAYATI Journal of Biosciences, 24(1), 26–34. https://doi.org/10.1016/j.hjb.2017.05.002
Downloads
Published
How to Cite
Issue
Section
Citation Check
License
Copyright (c) 2025 Edubiotik : Jurnal Pendidikan, Biologi dan Terapan

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.





