The effect of disinfectants on fertility of male mice (Mus musculus l.)
DOI:
https://doi.org/10.33503/ebio.v10i01.987Keywords:
Disinfectant, fertility, Mus musculus, spermatozoaAbstract
Since the outbreak of COVID-19, disinfectants have not only been used in health facilities, but they have also spread to households. The problem was that people often use disinfectant formulas that did not complied with health institutions guidelines. This study aims was to evaluate the effects of two types of disinfectants on the fertility, parameters of male mice, namely sperm concentration, motility and morphology. This was a true experimental study, with three treatment groups, namely the disinfectant type Alkyl Dimethyl Benzyl Ammonium Chloride (ADBAC) with a concentration of 10 mL/L, pine oil with a concentration of 30 mL/L, and control. The dose of each disinfectant was determined from the initial LD50 study. 20 mL of each disinfectant was sprayed on the cage twice a day in the absence of animals. The animals used were four week old male Mus musculus and were treated for 5 weeks. The parameters observed consisted of sperm concentration, motility, and morphology. All data were analyzed by one way Anova and Duncan's advanced test. The analysis results showed that the disinfectant had no effect on sperm concentration but instead had a negative effect on sperm motility and morphology. Both types of disinfectants reduced the progressive motility of sperm, while ADBAC produced more abnormal sperm morphology than pine oil. This condition is in accordance with other research that sperm motility is closely related to sperm morphology. The results of this study add to the evidence that disinfectants have a negative effect on male fertility parameters, namely sperm quality. The use of disinfectants for long periods also requires attention.
References
Affornalli, B. de A., Macetti, N. M., Marques, C. M., Andrade, D. P. de, & Mello, R. G. (2021). Correlation between trihalomethanes and the development of bladder cancer. Revista Brasileira de Cancerologia, 67(4), 1–12. https://rbc.inca.gov.br/revista/index.php/revista/article/view/1588
Agarwal, A., Sharma, R., Gupta, S., Finelli, R., Parekh, N., Selvam, M. K. P., Henkel, R., Durairajanayagam, D., Pompeu, C., Madani, S., Belo, A., Singh, N., Covarrubias, S., Darbandi, S., Sadeghi, R., Darbandi, M., Vogiatzi, P., Boitrelle, F., Simopoulou, M., … Shah, R. (2021). Sperm morphology assessment in the era of intracytoplasmic sperm injection: reliable results require focus on standardization, quality control, and training. World Journal of Men’s Health, 39, 0–14. https://doi.org/10.5534/WJMH.210054
Athena, A., Laelasari, E., & Puspita, T. (2020). Implementation of disifection in prevention of covid-19 transmission and its potential health risk in indonesia. Jurnal Ekologi Kesehatan, 19(1), 1–20. https://dx.doi.org/10.22435/jek.v19i1.3146
Barcelo, D. (2020). An environmental and health perspective for covid-19 outbreak: meteorology and air quality influence, sewage epidemiology indicator, hospitals disinfection, drug therapies and recommendations. In Journal of Environmental Chemical Engineering (Vol. 8, Issue 4 pp 1-4). Elsevier Ltd. https://doi.org/10.1016/j.jece.2020.104006
Boryshpolets, S., Dzyuba, B., García-Salinas, P., Bloomfield-Gadêlha, H., Gallego, V., Sotnikov, A., & Asturiano, J. F. (2025). The ancient and helical architecture of elasmobranchii’s spermatozoa enables progressive motility in viscous environments. PLoS ONE, 20(2 February), 1–23. https://doi.org/10.1371/journal.pone.0319354
Cook, M. A., & Brooke, N. (2021). Event-based surveillance of poisonings and potentially hazardous exposures over 12 months of the covid-19 pandemic. International Journal of Environmental Research and Public Health, 18(21) pp 1-32. https://doi.org/10.3390/ijerph182111133
Dcunha, R., Hussein, R. S., Ananda, H., Kumari, S., Adiga, S. K., Kannan, N., Zhao, Y., & Kalthur, G. (2022). Current insights and latest updates in sperm motility and associated applications in assisted reproduction. Reproductive Sciences, 29(1), 7–25. https://doi.org/10.1007/s43032-020-00408-y
Espejo, W., Celis, J. E., Chiang, G., & Bahamonde, P. (2020). Environment and covid-19: pollutants, impacts, dissemination, management and recommendations for facing future epidemic threats. Science of the Total Environment, 747, 1–8. https://doi.org/10.1016/j.scitotenv.2020.141314
Fatima, S., Arif, Z., Gulnaz, H., Kaukab, N., & Catt, S. (2018). Toxic town: art disinfectants damage human sperms: an investigation into potential toxicity of art disinfectants on human sperms. Pakistan Journal of Medical and Health Sciences, 12(4), 1413–1415. http://dx.doi.org/10.1016/j.reprotox
Gaffney, E. A., Ishimoto, K., & Walker, B. J. (2021). Modelling motility: the mathematics of spermatozoa. Ftrontiers in Cell and Developmental Biology, 9, 1–17. https://doi.org/10.3389/fcell.2021.710825
Gonsioroski, A., Meling, D. D., Gao, L., Plewa, M. J., & Flaws, J. A. (2021). Iodoacetic acid affects estrous cyclicity, ovarian gene expression, and hormone levels in mice. Biology of Reproduction, 105(4), 1030–1042. https://doi.org/10.1093/biolre/ioab108
Gonzalez, R. V. L., Weis, K. E., Gonsioroski, A. V., Flaws, J. A., & Raetzman, L. T. (2021). Iodoacetic acid, a water disinfection byproduct, disrupts hypothalamic, and pituitary reproductive regulatory factors and induces toxicity in the female pituitary. Toxicological Sciences, 184(1), 46–56. https://doi.org/10.1093/toxsci/kfab106
Ha, M., Mou, L., Qu, J., & Liu, C. (2024). Impacts of iodoacetic acid on reproduction: current evidence, underlying mechanisms, and future research directions. Frontiers in Public Health, 12(October), 1–9. https://doi.org/10.3389/fpubh.2024.1434054
Hrubec, T. C., Melin, V. E., Shea, C. S., Ferguson, E. E., Garofola, C., Repine, C. M., Chapman, T. W., Patel, H. R., Razvi, R. M., Sugrue, J. E., Potineni, H., Magnin-Bissel, G., & Hunt, P. A. (2017). ambient and dosed exposure to quaternary ammonium disinfectants causes neural tube defects in rodents. Birth Defects Research, 109(14), 1166–1178. https://doi.org/10.1002/bdr2.1064
Jeong, C. H., Gao, L., Dettro, T., Wagner, E. D., Ricke, W. A., Plewa, M. J., & Flaws, J. A. (2016). Monohaloacetic acid drinking water disinfection by-products inhibit follicle growth and steroidogenesis in mouse ovarian antral follicles in vitro. Reprod. Toxicol, 62, 71–76. https://doi.org/10.1016/j.reprotox.2016.04.028
Jurewicz, J., Dziewirska, E., Radwan, M., & Hanke, W. (2018). Air pollution from natural and anthropic sources and male fertility. In Reproductive Biology and Endocrinology (Vol. 16, Issue 1 1-18). BioMed Central Ltd. https://doi.org/10.1186/s12958-018-0430-2
Kalankesh, L. R., Kheirandish, R., Nematollahi, S., Hosseini, J., Esmailli, M., & Aliakbari, F. (2020). Challenges of disinfection by-products in water and effect on the men’s health infertility-a narrative review. In Men’s Health Journal (Vol. 4, Issue 1 1-16). https://doi.org/10.22037/mhj.v4i1.30238
Kampf, G., Todt, D., Pfaender, S., & Steinmann, E. (2020). Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. In Journal of Hospital Infection (Vol. 104, Issue 3, pp. 246–251). W.B. Saunders Ltd. https://doi.org/10.1016/j.jhin.2020.01.022
Kasmeri, A. P. (2020). Pengaruh ekstrak pedada merah (Sonneratia careolaris l.) Terhadap jumlah dan morfologi Spermatozoa mencit (Mus musculus l.). Bioconcetta, 6(1), 7–13. https://doi.org/10.22202/bc.2020.v6i2.4174
Khalife, D., Khalil, A., & Ghazeeri, G. (2019). The developmental process of spermatogenesis. Journal of Andrology and Gynaecology, 7(1): 1-3. https://www.researchgate.net/publication/337032302
Kleshchev, M., Osadchuk, A., & Osadchuk, L. (2021). Impaired semen quality, an increase of sperm morphological defects and dna fragmentation associated with environmental pollution in urban population of young men from western siberia, russia. PLoS ONE, 16 pp 1-23(10 October). https://doi.org/10.1371/journal.pone.0258900
Liang, Y., Huang, X., Fang, L., Wang, M., Yu, C., & Guan, Q. (2022). Effect of iodoacetic acid on the reproductive system of male mice. Frontiers in Pharmacology, 13(August), 1–11. https://doi.org/10.3389/fphar.2022.958204
Luthfi, M. J. (2015). A simple and practical method for rat epididymal sperm count (Rattus norvegicus). Biology, Medicine, & Natural Product Chemistry, 4(1), 1. https://doi.org/10.14421/biomedich.2015.41.1-3
Martinez, G., Coutton, C., Loeuillet, C., Cazin, C., Muroňová, J., Boguenet, M., Lambert, E., Dhellemmes, M., Chevalier, G., Hograindleur, J. P., Vilpreux, C., Neirijnck, Y., Kherraf, Z. E., Escoffier, J., Nef, S., Ray, P. F., & Arnoult, C. (2022). Oligogenic heterozygous inheritance of sperm abnormalities in mouse. ELife, 11, 1–14. https://doi.org/10.7554/eLife.75373
Mehtar, S., Bulabula, A. N. H., Nyandemoh, H., & Jambawai, S. (2016). Deliberate exposure of humans to chlorine-the aftermath of ebola in west africa. Antimicrobial Resistance and Infection Control, 5(1), 1–8. https://doi.org/10.1186/s13756-016-0144-1
Melin, V. E., Potineni, H., Hunt, P., Griswold, J., Siems, B., Werre, S. R., & Hrubec, T. C. (2014). Exposure to common quaternary ammonium disinfectants decreases fertility in mice. Reproductive Toxicology, 50, 163–170. https://doi.org/10.1016/j.reprotox.2014.07.071
Musfirah, M. S. B. L. H. N. (2016). Potensi ekstrak etanol 70% akar saluang balum (Lavanga sarmentosa blume kurz) terhadap kualitas dan viabilitas sperma mencit. Pharmaciana, 6(2) 131-138. https://doi.org/10.12928/pharmaciana.v6i2.4037
Noorimotlagh, Z., Mirzaee, S. A., Jaafarzadeh, N., Maleki, M., Kalvandi, G., & Karami, C. (2021). A systematic review of emerging human coronavirus (SARS-CoV-2) outbreak: focus on disinfection methods, environmental survival, and control and prevention strategies. Environmental Science and Pollution Research, 28(1), 1–15. https://doi.org/10.1007/s11356-020-11060-z
Pelzman, D. L., & Sandlow, J. I. (2024). Sperm morphology: evaluating its clinical relevance in contemporary fertility practice. Reproductive Medicine and Biology, 23(1), 1–8. https://doi.org/10.1002/rmb2.12594
Santi, D., Crépieux, P., Reiter, E., Spaggiari, G., Brigante, G., Casarini, L., Rochira, V., & Simoni, M. (2020). Follicle-stimulating hormone (FSH) action on spermatogenesis: A focus on physiological and therapeutic roles. In Journal of Clinical Medicine (Vol. 9, Issue 4 1-17). MDPI. https://doi.org/10.3390/jcm9041014
Downloads
Published
How to Cite
Issue
Section
Citation Check
License
Copyright (c) 2025 Edubiotik : Jurnal Pendidikan, Biologi dan Terapan

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.