Potential candidate probiotic Bacillus amyloliquefaciens strain NO10 SA8 in cholesterol assimilation and amino acid production
DOI:
https://doi.org/10.33503/ebio.v10i01.1038Keywords:
Amino acids production; , Cholesterol assimilation; , Probiotic;Abstract
Probiotics are known as beneficial microorganisms that, when administered in appropriate amounts, can provide health benefits to their host. The ability of probiotics to produce amino acids is crucial to consider, as amino acids are essential components for the growth and development of organisms. The objective of this study is to analyze the ability of Bacillus amyloliquefaciens strain NO10 SA8 to assimilate cholesterol and its capability to produce amino acids. This study employed a descriptive method, including cholesterol assimilation and analysis of amino acid types produced by the potential probiotic bacterium Bacillus amyloliquefaciens strain NO10 SA8. The results of this study showed that Bacillus amyloliquefaciens strain NO10 SA8 ability demonstrated a relatively high cholesterol assimilation capacity—approximately 69.75% compared to the positive control. This indicates that the strain has potential to be used as a cholesterol-lowering agent in functional applications, such as probiotics or dietary supplements.it was capable of assimilating cholesterol. Furthermore, it was able to produce various amino acids, except for L-Histidine, L-Tyrosine, and L-Tryptophan. The conclusion of this study is that Bacillus amyloliquefaciens strain NO10 SA8 has potential as a probiotic strain because it demonstrated the ability to assimilate cholesterol 69.75% compared to the positive control, and producing amino acids.
References
Agolino, G., Pino, A., Vaccalluzzo, A., Cristofolini, M., Solieri, L., Caggia, C., & Randazzo, C. L. (2024). Bile salt hydrolase: The complexity behind its mechanism in relation to lowering-cholesterol lactobacilli probiotics. Journal of Functional Foods, 120, 106357. https://doi.org/10.1016/j.jff.2024.106357
Ahmed, F. A., Ahmed, H. F., & Sobeih, A. (2025). Impact of Citrus reticulata Peel Extract and Bifidobacterium longum on Staphylococcus aureus during Cold Storage of Functional Yoghurt. Egyptian Journal of Veterinary Sciences, 56(5), 943-950.. https://doi.org/10.21608/ejvs.2024.277048.1918
AOAC 988.15. (2005). Tryptophan in Foods and Food and Feed Ingredient. Ion Exchanger Chromatographic Method. https://doi.org/10.1093/9780197610145.003.3802
Botthoulath, V., Dalmacio, I. F., & Elegado, F. B. (2024) Physico-chemical and functional properties of the lao fermented bamboo shoots (Nor Mai Som) inoculated with potential probiotic bacteria, Pediococcus pentosaceus BBS1 and Lactiplantibacillus plantarum BBS13. Food Chemistry Advances, 5, 100803. https://doi.org/10.1016/j.focha.2024.100803
Eswaran, S. U. D., Sundaram, L., Perveen, K., Bukhari, N. A., & Sayyed, R. Z. (2024). Osmolyte-producing microbial biostimulants regulate the growth of Arachis hypogaea L. under drought stress. BMC microbiology, 24(1), 165. https://doi.org/1186/s12866-024-03320-6
Fijan, S. Probiotics and their antimicrobial effect. Microorganisms. (2023).11(2), 528. https://doi.org/10.3390/microorganisms11020528
Larsson, D. G., & Flach, C. F. Antibiotic resistance in the environment. Nature Reviews Microbiology. (2022). 20(5), 257-269. https://doi.org/10.1038/s41579-021-00649-x
Lassen, D.R., van Hecke, J., Jørgensen, H., Bukh, C., Andersen, B., & Schjoerring, J. K. (2018). High-throughput analysis of amino acids in plant materials by single quadrupole mass spectrometry. Plant Methods, 14, 1-9. https://doi.org/10.1186/s13007-018-0277-8.
Li, X., Zheng, S., & Wu, G. (2021). Nutrition and functions of amino acids in fish. Amino acids in nutrition and health: amino acids in the nutrition of companion, zoo and farm animals,133-168. https://doi.org/10.1007/978-3-030-54462-1_8.
Liu, X., Ji, H., Zhang, C., Sun, N., Xia, T., Wang, Z., & Wang, X. (2024). The poly-γ-glutamic acid-producing bacterium Bacillus amyloliquefaciens W25 enhanced the salt tolerance of lettuce by regulating physio-biochemical processes and influencing the rhizosphere soil microbial community. Environmental and Experimental Botany, 220, 105679. https://doi.org/10.1016/j.envexpbot.2024.105679 .
Puri, P., Sharma, J. G., & Singh, R. (2022). Biotherapeutic microbial supplementation for ameliorating fish health: developing trends in probiotics, prebiotics, and synbiotics use in finfish aquaculture. Animal Health Research Reviews, 23(2), 113-135. https://doi.org/10.1017/S1466252321000165
Shang, W., Zhang, Y. M., Ding, M. Z., Sun, H. Z., He, J. X., & Cheng, J. S. (2024). Improved engineered fungal-bacterial commensal consortia simultaneously degrade multiantibiotics and biotransform food waste into lipopeptides. Journal of Environmental Management, 371, 123177. https://doi.org/10.1016/j.jenvman.2024.123177 .
Sionek, B., Szydłowska, A., Zielińska, D., Neffe-Skocińska, K., & Kołożyn-Krajewska, D. (2023). Beneficial Bacteria isolated from food in relation to the next generation of probiotics. Microorganisms, 11(7), 1714. https://doi.org/10.3390/microorganisms11071714
Sukmawati, S., & Badaruddin, M. I. (2019). Screening of probiotic bacteria candidates in the mangrove tourism area in Klawalu Sorong city West Papua. Bioscience, 3(2), 161-168. https://doi.org/10.31763/bioenvipo.v4i1.779.
Sukmawati, S., Hardianti, F., Zakariah, M. I. B., Sulfiana, S., & Riskawati, R. (2024). Probiotic potential of bacterial isolates from Klawalu Mangrove: Physiological characterization. Biological Environment and Pollution, 4(1), 8-16. https://doi.org/10.31763/bioenvipo.v4i1.779.
Sukmawati, S., Fahrizal, A., & Yunita, M. (2024). Pathogenicity analysis and application of probiotic bacteria in Catfish (Clarias sp.) cultivation in vivo. Malaysian Journal of Microbiology, 20(4). https://doi.org/10.21161/mjm.230299.
Sukmawati, S., Rosalina, F., Sipriyadi, S., Dewi, N. K., Yunita, M., Sarhan, A. R. T., ... & Kusumawati, E. (2022). Bacterial diversity of mangrove ecosystem in Klawalu Sorong, West Papua, Indonesia. Biodiversitas Journal of Biological Diversity, 23(3). https://doi.org/10.13057/biodiv/d230329.
Telaumbanua, B. V., Telaumbanua, P. H., Lase, N. K., & Dawolo, J. (2023). Penggunaan probiotik em4 pada media budidaya ikan. Triton: Jurnal Manajemen Sumberdaya Perairan. 19(1), 36-42. https://doi.org10.30598/TRITONvol19issue1page36-42.
Weber, P. (2022). Determination of amino acids in food and feed by microwave hydrolysis and UHPLC-MS/MS. Journal of Chromatography B, 1209, 123429. https://doi.org/10.1016/j.jchromb.2022.123429
Wongrattanapipat, S., Chiracharoenchitta, A., Choowongwitthaya, B., Komsathorn, P., La-Ongkham, O., Nitisinprasert, S., ... & Nakphaichit, M. Selection of potential probiotics with cholesterol-lowering properties for probiotic yoghurt production. (2022) Food Science and Technology International, 28(4), 353-365. https://doi.org/10.1177/10820132211012
Wu, Q., Ni, M., Dou, K., Tang, J., Ren, J., Yu, C., & Chen, J. (2018). Co-culture of Bacillus amyloliquefaciens ACCC11060 and Trichoderma asperellum GDFS1009 enhanced pathogen-inhibition and amino acid yield. Microbial Cell Factories, 17, 1-12 https://doi.org/10.1186/s12934-018-1004-x.
Xing, S., Liang, X., Zhang, X., Oliva‐Teles, A., Peres, H., Li, M., ... & Xue, M (2024). Essential amino acid requirements of fish and crustaceans, a meta‐analysis. Reviews in Aquaculture, 16(3), 1069-1086. https://doi.org/10.1111/raq.12886
Yan, C., Chen, M., Jin, J., Liu, X., Wang, Z., Luo, Y., & Zhang, D. (2024) Bacillus subtilis 2118 exhibits bactericidal activity due to an inserted fish cDNA library. Aquaculture, 593, 741300. https://doi.org/10.1016/j.aquaculture.2024.741300.
Zhang, Y. M., Qiao, B., Shang, W., Ding, M. Z., Xu, Q. M., Duan, T. X., & Cheng, J. S. (2024). Improving salt-tolerant artificial consortium of Bacillus amyloliquefaciens for bioconverting food waste to lipopeptides. Waste Management, 181, 89-100. https://doi.org/10.1016/j.wasman.2024.04.006.
Zhu, J., Wang, X., Zhao, J., Ji, F., Zeng, J., Wei, Y., ... & Wang, C. (2024). Genomic characterization and related functional genes of γ-poly glutamic acid producing Bacillus subtilis. BMC microbiology, 24(1), 125. https://doi.org/10.1186/s12866-024-03262-z
Downloads
Published
How to Cite
Issue
Section
Citation Check
License
Copyright (c) 2025 Edubiotik : Jurnal Pendidikan, Biologi dan Terapan

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.