Morphological plasticity of uceng fish (Nemacheilus spp.): A statistical exploration of water quality influences in East Java’s river

Authors

  • Dwi Anggorowati Rahayu Biology Study Programme, Universitas Negeri Surabaya, Surabaya, Indonesia
  • Endik Deni Nugroho Department of Biology Education, Universitas Nahdlatul Ulama Pasuruan, Pasuruan, Indonesia
  • Cahya Ajeng Valenta Tresna Sulung Biology Study Programme, Universitas Negeri Surabaya, Surabaya, Indonesia
  • Rusdianto Rusdianto Research Center for Biosystematics and Evolution, BRIN Cibinong, Bogor, Indonesia
  • Noorhidayah Binti Mamat Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia

DOI:

https://doi.org/10.33503/ebio.v10i01.1383

Keywords:

Morphometics, native fish, plasticity, uceng, water quality

Abstract

Morphological plasticity in aquatic organisms is an adaptive phenomenon that enables species to respond to changing environmental conditions, particularly in native fish species such as the Uceng fish. This study aims to: (1) describe the morphological variation of the Uceng fish and water quality parameters in three river locations in East Java; (2) analyze the relationship between water quality parameters and the morphological characteristics of the Uceng fish; (3) identify the water quality parameters that most affect morphological variation of fish through PCA analysis; and (4) model the relationship between water quality parameters as independent variables and fish morphological characteristics as dependent variables. This research employed a correlational approach with a cross-sectional comparative design, comparing fish samples from three different geographic locations: Blitar, Pasuruan, and Lumajang. Data analysis was conducted using correlation analysis, PCA, and multiple regression modeling. Measurement of the Morphological Characteristics of the Uceng Fish, Morphometric Measurement (14 characters). The results showed a significant negative correlation (r = -0.155, p = 0.017) between environmental factors and fish morphology, with approximately 33% of the morphological variation explained by the combination of environmental factors (DO, temperature, COD, and TDS). PCA analysis identified DO as the parameter with the strongest positive influence, while temperature, COD, and TDS showed negative effects. These findings emphasize the species’ adaptive capacity and underline the importance of monitoring environmental quality to support biodiversity conservation in increasingly impacted river ecosystems of East Java.

References

Arifin, O. Z., Prakoso, V. A., & Pantjara, B. (2018). Ketahanan ikan tambakan (Helostoma Temminkii) terhadap beberapa parameter kualitas air dalam lingkungan budidaya. Jurnal Riset Akuakultur, 12(3), 241-251. https://doi.org/10.15578/jra.12.3.2017.241-251

Ath-thar, M. H. F., Ambarwati, A., Soelistyowati, D. T., & Kristanto, A. H. (2018). Keragaan genotipe dan fenotipe Ikan Uceng Nemacheilus Fasciatus (Valenciennes, 1846) Asal Bogor, Temanggung, Dan Blitar. Jurnal Riset Akuakultur, 13(1), 1-10. https://doi.org/10.15578/jra.13.1.2018.1-10

Ayyubi, Hasan, Budiharjo, Agung, & Sugiyarto. (2018). Karakteristik morfologis populasi ikan tawes Barbonymus gonionotus (Bleeker, 1849) dari lokasi perairan berbeda di Provinsi Jawa Tengah. Jurnal Iktiologi Indonesia, 19(1), 65–78. https://doi.org/10.32491/jii.v19i1.378

Bhawiyuga, A., & Yahya, W. (2019). Sistem monitoring kualitas air kolam budidaya menggunakan jaringan sensor nirkabel berbasis protokol lora. Jurnal Teknologi Informasi Dan Ilmu Komputer (JTIIK), 6(1), 99–106. https://doi.org/10.25126/jtiik.2019611292

Boily, P., & Magnan, P. (2002). Relationship between individual variation in morphological characters and swimming costs in brook charr (Salvelinus fontinalis) and yellow perch (Perca flavescens). Journal Experimental Biolology, 205(7), 1031–1036. https://doi.org/10.1242/jeb.205.7.1031

Caves, E. M., Sutton, T. T., & Johnsen, S. (2017). Visual acuity in ray-finned fishes correlates with eye size and habitat. Journal of Experimental Biology, 220(9), 1586–1596. https://doi.org/10.1242/jeb.151183

Chapman, L., Albert, J., & Galis, F. (2008). Developmental plasticity, genetic differentiation, and hypoxia-induced trade-offs in an african Cichlid fish. The Open Evolution Journal, 2(1), 75–88. https://doi.org/10.2174/1874404400802010075

Chevin, L. M., Lande, R., & Mace, G. M. (2010). Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biology, 8(4), 1-8. https://doi.org/10.1371/journal.pbio.1000357

Chintalacheruvu, M. R., & Modi, P. (2023). Application of best subset method for river water quality modeling: A study on Godavari river, India. Environmental Quality Management, 33(1), 393–409. https://doi.org/10.1002/tqem.22067

Crispo, E., & Chapman, L. J. (2011). Hypoxia drives plastic divergence in cichlid body shape. Evolutionary Ecology, 25(4), 949–964. https://doi.org/10.1007/s10682-010-9445-7

Crozier, L. G., Hendry, A. P., Lawson, P. W., Quinn, T. P., Mantua, N. J., Battin, J., Shaw, R. G., & Huey, R. B. (2008). Potential responses to climate change in organisms with complex life histories: evolution and plasticity in Pacific salmon. Evolutionary Applications, 1(2), 252–270. https://doi.org/10.1111/j.1752-4571.2008.00033.x

Davis, A. M., Unmack, P. J., Pusey, B. J., Pearson, R. G., & Morgan, D. L. (2014). Evidence for a multi-peak adaptive landscape in the evolution of trophic morphology in terapontid fishes. Biological Journal of the Linnean Society, 113(2), 623–634. https://doi.org/10.1111/bij.12363

Domenici, P., Turesson, H., Brodersen, J., & Brönmark, C. (2008). Predator-induced morphology enhances escape locomotion in crucian carp. Proceedings of the Royal Society B: Biological Sciences, 275(1631), 195–201. https://doi.org/10.1098/rspb.2007.1088

Ehlman, S. M., Sandkam, B. A., Breden, F., & Sih, A. (2015). Developmental plasticity in vision and behavior may help guppies overcome increased turbidity. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 201(12), 1125–1135. https://doi.org/10.1007/s00359-015-1041-4

Escalera-Vázquez, L. H., & Zambrano, L. (2010). The effect of seasonal variation in abiotic factors on fish community structure in temporary and permanent pools in a tropical wetland. Freshwater Biology, 55(12), 2557–2569. https://doi.org/10.1111/j.1365-2427.2010.02486.x

Fischer-Rousseau, L., Chu, K. P., & Cloutier, R. (2010). Developmental plasticity in fish exposed to a water velocity gradient: A complex response. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 314(1), 67–85. https://doi.org/10.1002/jez.b.21311

Gonzalez-martinez, A., Lopez, M., Molero, H. M., Rodriguez, J., Gonzales, M., Barba, C., & Garcia, A. (2020). Morphometric and meristic characterization of native chame fish (Dormitator latifrons) in Ecuador Using Multivariate Analysis. Animals, 10(10), 1805. https://www.researchgate.net/publication/344608260

Koehn, J. D., Hobday, A. J., Pratchett, M. S., & Gillanders, B. M. (2011). Climate change and Australian marine and freshwater environments, fishes and fisheries: synthesis and options for adaptation. Marine and Freshwater Research, 62(9), 1148–1164. https://doi.org/10.1071/MF11139

Kusuma, R. O., Dadiono, M. S., Kusuma, B., & Syakuri, H. (2021). Keragaman genetik ikan uceng (Nemacheilus) di sungai wilayah Banyumas berdasarkan sekuen gen Cytochrome Oxidase Subunit I (COI). Jurnal Perikanan Universitas Gadjah Mada, 23(2), 89-94. https://doi.org/10.22146/jfs.61167

Langerhans, & DeWitt. (2004). Shared and unique features of evolutionary diversification. The American Naturalist, 164(3), 335. https://doi.org/10.2307/3473120

Langerhans, R. B. (2008). Predictability of phenotypic differentiation across flow regimes in fishes. Integrative and Comparative Biology, 48(6), 750–768. https://doi.org/10.1093/icb/icn092

Langerhans, R. B., & Reznick, D. N. (2010). Ecology and evolution of swimming performance in fishes: predicting evolution with biomechanic. Science Publishers, 200-248. https://www.researchgate.net/publication/268000677

Levis, N. A., & Pfennig, D. W. (2016). Evaluating “Plasticity-first” evolution in nature: key criteria and empirical approaches. Trends in Ecology and Evolution, 31(7), 563–574. https://doi.org/10.1016/j.tree.2016.03.012

Li, S., Huang, Y., Li, F., Liu, Y., Ma, H., Zhang, X., Wang, X., Chen, W., Cui, G., & Wang, T. (2024). Functional alpha and beta diversity of fish communities and their relationship with environmental factors in the Huanghe River (Yellow River) estuary and adjacent Seas, China. Fishes, 9(6), 1-19. https://doi.org/10.3390/fishes9060222

Listyarini, D. W., Sulmartiwi, L., Hasan, V., & Andriyono, S. (2022). Karakteristik morfologi dua spesies Mahseer (Cyprinidae; Torinae) asal Jawa Timur. Jurnal Kelautan dan Perikanan Terapan (JKPT), 5(2), 171-178. https://ejournal-balitbang.kkp.go.id/index.php/jkpt/article/download/11781/8285

Lostrom, S., Evans, J. P., Grierson, P. F., Collin, S. P., Davies, P. M., & Kelley, J. L. (2015). Linking stream ecology with morphological variability in a native freshwater fish from semi-arid Australia. Ecology and Evolution, 5(16), 3272–3287. https://doi.org/10.1002/ece3.1590

Mulyani, Y., Pratiwi, D. Y., & Agung, M. U. K. (2021). Penyuluhan daring manajemen kualitas air untuk budidaya ikan dalam ember di Desa Cipacing, Kecamatan Jatinangor, Kabupaten Sumedang, Jawa Barat. Farmers : Journal of Community Services, 2(1), 42-46. https://doi.org/10.24198/fjcs.v2i1.31546

Parawangsa, I. N. Y., & Tampubolon, P. A. (2023). Hubungan karakter panjang, pola pertumbuhan dan kondisi ikan Tawes (Barbonymus gonionotus Bleeker, 1849 ) di danau Batur, Bali. Berita Biologi, 22(2), 215–223. https://ejournal.brin.go.id/berita_biologi/article/download/1974/1219/5691

Prakoso, V. A., Ryu, J. H., & Chang, Y. J. (2018). Ritme harian konsumsi oksigen induk ikan mas Cyprinus Carpio dengan fotoperiode kontinyu 24 jam. Jurnal Sains Natural, 8(1), 1-7. https://doi.org/10.31938/jsn.v8i1.105

Prakoso, V. A., Subagja, J., & Kristanto, A. H. (2017). Aspek biologi reproduksi dan pola pertumbuhan ikan uceng (Nemacheilus fasciatus) dalam pemeliharaan di akuarium. Media Akuakultur, 12(2), 67-74. https://www.researchgate.net/publication/321977149

Rahayu, D. A., Kuntjoro, S., Budijastuti, W., Winarsih Winarsih, R. A., Nugroho, E. D., Basith, A., Kurniawan, N., & Haryono. (2023). Further study on two species of loach fishes (Cypriniformes: Nemacheilidae: Nemacheilus) based on morphology and molecular data. Biotropia, 30(3), 329–345. https://doi.org/10.11598/btb.2023.30.2.1942

Ramadhani, D. N., & Asmiatin, F. (2022). Eksplorasi tumbuhan berkhasiat obat di bantaran sungai Brantas sebagai upaya konservasi sungai. Environmental Pollution Journal, 2(1), 324–336. https://doi.org/10.58954/epj.v2i1.40

Reid, A. J., Carlson, A. K., Creed, I. F., Eliason, E. J., Gell, P. A., Johnson, P. T. J., Kidd, K. A., MacCormack, T. J., Olden, J. D., Ormerod, S. J., Smol, J. P., Taylor, W. W., Tockner, K., Vermaire, J. C., Dudgeon, D., & Cooke, S. J. (2019). Emerging threats and persistent conservation challenges for freshwater biodiversity. Biological Reviews, 94(3), 849–873. https://doi.org/10.1111/brv.12480

Reid, N. M., Proestou, D. A., Clark, B. W., Warren, W. C., Colbourne, J. K., Shaw, J. R., Karchner, S. I., Hahn, M. E., Nacci, D., Oleksiak, M. F., Crawford, D. L., & Whitehead, A. (2016). The genomic landscape of rapid repeated evolutionary adaptation to toxic pollution in wild fish. Science, 354(6317), 1305–1308. https://doi.org/10.1126/science.aah4993

Rofiq, A. A., & Sari, I. K. (2022). Analisis mikroplastik pada saluran pencernaan dan insang ikan di sungai Brantas, Jawa Timur. Environmental Pollution Journal, 2(1), 263–272. https://doi.org/10.58954/epj.v2i1.38

Rundle, H. D., & Nosil, P. (2005). Ecological speciation. In Ecology Letters, 8(3), 336-352. https://doi.org/10.1111/j.1461-0248.2004.00715.x

Santos, F. A. Dos, Marques, D. F., Terencio, M. L., Feldberg, E., & Rodrigues, L. R. R. (2016). Cytogenetic variation of repetitive DNA elements in Hoplias malabaricus (Characiformes-erythrinidae) from white, black and clear water rivers of the amazon basin. Genetics and Molecular Biology, 39(1), 40–48. https://doi.org/10.1590/1678-4685-GMB-2015-0099

Sather, N. K., Johnson, G. E., Teel, D. J., Storch, A. J., Skalski, J. R., & Cullinan, V. I. (2016). Shallow tidal freshwater habitats of the Columbia River: spatial and temporal variability of Fish Communities and Density, Size, and Genetic Stock Composition of Juvenile Chinook Salmon. Transactions of the American Fisheries Society, 145(4), 734–753. https://doi.org/10.1080/00028487.2016.1150878

Schluter, D. (2000). The ecology of adaptive Radiation. Oxford University Press.

Schneider, R. F., Li, Y., Meyer, A., & Gunter, H. M. (2014). Regulatory gene networks that shape the development of adaptive phenotypic plasticity in a cichlid fish. Molecular Ecology, 23(18), 4511–4526. https://doi.org/10.1111/mec.12851

Sembiring, A. P., Adelina, A., & Suharman, I. (2024). Pemanfaatan tepung daun Indigofera (Indigofera sp) terfermentasi menggunakan Kombucha dalam pakan terhadap pertumbuhan benih ikan Patin Siam (Pangasianodon Hypophthalmus). Ilmu Perairan (Aquatic Science), 12(1), 150-159. https://jp.ejournal.unri.ac.id/index.php/jipas/article/view/2009

Shuai, F., Yu, S., Lek, S., & Li, X. (2018). Habitat effects on intra‐species variation in functional morphology Evidence. Ecology and Evolution, 8, 10902–10913. https://doi.org/10.1002/ece3.4555

Su, G., Villéger, S., & Brosse, S. (2019). Morphological diversity of freshwater fishes differs between realms, but morphologically extreme species are widespread. Global Ecology and Biogeography, 28(2), 211–221. https://doi.org/10.1111/geb.12843

Sulung, C. A. V. T., Chair, N. El, Rahayu, D. A., Nugroho, E. D., & Rusdianto. (2024). Morphology and COI barcodes reveal local loaches (Nemacheilus spp.) from Pasuruan River, East Java, Indonesia. Biodiversitas, 25(7), 2806–2819. https://doi.org/10.13057/biodiv/d250702

Syam, A.R., Mujiyanto, M., & Rahman.A. (2023). Eco-environmental assessment in the Sembilan Archipelago, Indonesia: its relation to the abundance of humphead wrasse and coral reef fish composition. Fish Aquat Sci, 26(12), 738-75. https://doi.org/10.47853/FAS.2023.e66

Tiwari, P., & Tiwari, M. P. (2022). Dam Impact on Water Quality and Morphometric characteristic of Schizothorax Species in Bhagirathi River of Uttarkashi, Uttarakhand. Journal of Global Resources, 8(02), 12–22. https://doi.org/10.46587/jgr.2022.v08i02.002

Torres-Dowdall, J., Handelsman, C. A., Reznick, D. N., & Ghalambor, C. K. (2012). Local adaptation and the Evolution of Phenotypic Plasticity In Trinidadian Guppies (Poecilia Reticulata). Evolution, 66(11), 3432–3443. https://doi.org/10.1111/j.1558-5646.2012.01694.x

Toussaint, A., Charpin, N., Brosse, S., & Villéger, S. (2016). Global functional diversity of freshwater fish is concentrated in the Neotropics while functional vulnerability is widespread. Scientific Reports, 6(3), 1–9. https://doi.org/10.1038/srep22125

Verberk, W. C. E. P., Atkinson, D., Hoefnagel, K. N., Hirst, A. G., Horne, C. R., & Siepel, H. (2021). Shrinking body sizes in response to warming: explanations for the temperature–size rule with special emphasis on the role of oxygen. Biological Reviews, 96(1), 247–268. https://doi.org/10.1111/brv.12653

West-Eberhard, M. J. (2003). Developmental Plasticity and Evolution. Oxford University Press. https://doi.org/10.1093/oso/9780195122343.001.0001

Downloads

Published

2025-07-24

How to Cite

[1]
Rahayu, D.A. et al. 2025. Morphological plasticity of uceng fish (Nemacheilus spp.): A statistical exploration of water quality influences in East Java’s river. Edubiotik : Jurnal Pendidikan, Biologi dan Terapan. 10, 01 (Jul. 2025), 332–348. DOI:https://doi.org/10.33503/ebio.v10i01.1383.

Citation Check