Ecological footprint mitigation through corporate environmental management: Measuring carbon sequestration in PT Organon Pharma Indonesia's conservation and industrial areas
DOI:
https://doi.org/10.33503/ebio.v10i01.1537Keywords:
Carbon sequestration, environmental management, ecological footprint, pharmaceutical sustainabilityAbstract
Climate change mitigation in the pharmaceutical industry is necessary for corporate conservation. This study aims to measure the carbon sequestration potential in the conservation area and the Seroto Block plantation area, evaluate the company's environmental management strategy, and analyze the success factors of the conservation program at PT Organon Pharma Indonesia. This study uses a mixed-methods approach with a sequential explanatory design. The research instruments include GPS, tree measuring tools, environmental sensors, and biomass assessment tools. Data analysis techniques include estimating biomass per tree, determining carbon stocks, calculating CO₂ equivalents, and evaluating the effectiveness of conservation strategies. The results show that the conservation area stores the most carbon (a total of 40.39 tons C/ha, equivalent to 462.56 tons CO₂), followed by the industrial area (a total of 10.77 tons C/ha, equivalent to 95.55 tons CO₂), and the plantation area shows minimal carbon storage (60.95 kg). Pinus merkusii dominated the conservation area (85.6% of carbon storage), while Mangifera indica, Pterocarpus indicus, and Filicium decipiens contributed 91.5% of carbon storage in the industrial area. Environmental conditions, which were optimal in the conservation area (24.3°C, 73% humidity, pH 6.3) and harsher in the industrial area (33.3°C, 56% humidity), had a significant impact on carbon sequestration. This study concluded that conservation areas have the highest carbon storage capacity compared to industrial and plantation areas.
References
Alan, M. (2020). Silviculture and tree breeding for planted forests. Eurasian Journal of Forest Science, 8(1), 60–69. https://doi.org/10.31195/ejejfs.661352
Basuki, I., Adinugroho, W. C., Utomo, N. A., Syaugi, A., Tryanto, D. H., Krisnawati, H., Cook‐patton, S. C., & Novita, N. (2022). Reforestation opportunities in indonesia: Mitigating climate change and achieving sustainable development goals. Forests, 13(3). https://doi.org/10.3390/f13030447
Calfapietra, C., Peñuelas, J., & Niinemets, Ü. (2015). Urban plant physiology: Adaptation-mitigation strategies under permanent stress. Trends in Plant Science, 20(2), 72–75. https://doi.org/10.1016/j.tplants.2014.11.001
Castro, M. B., Barbosa, A. C. M. C., Pompeu, P. V., Eisenlohr, P. V., de Assis Pereira, G., Apgaua, D. M. G., Pires-Oliveira, J. C., Barbosa, J. P. R. A. D., Fontes, M. A. L., dos Santos, R. M., & Tng, D. Y. P. (2020). Will the emblematic southern conifer Araucaria angustifolia survive to climate change in Brazil? Biodiversity and Conservation, 29(2), 591–607. https://doi.org/10.1007/s10531-019-01900-x
Cavanaugh, K. C., Gosnell, J. S., Davis, S. L., Ahumada, J., Boundja, P., Clark, D. B., Mugerwa, B., Jansen, P. A., O’Brien, T. G., Rovero, F., Sheil, D., Vasquez, R., & Andelman, S. (2014). Carbon storage in tropical forests correlates with taxonomic diversity and functional dominance on a global scale. Global Ecology and Biogeography, 23(5), 563–573. https://doi.org/10.1111/geb.12143
Chave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M. S., Delitti, W. B. C., Duque, A., Eid, T., Fearnside, P. M., Goodman, R. C., Henry, M., Martínez-Yrízar, A., Mugasha, W. A., Muller-Landau, H. C., Mencuccini, M., Nelson, B. W., Ngomanda, A., Nogueira, E. M., Ortiz-Malavassi, E., … Vieilledent, G. (2014). Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology, 20(10), 3177–3190. https://doi.org/10.1111/gcb.12629
D´Asaro, A. (2017). Nutritional and hormonal factors affecting fruit set in avocado [Universita Degli Studi Di Palermo]. https://doi.org/10.4995/THESIS/10251/79875
Davies, Z. G., Edmondson, J. L., Heinemeyer, A., Leake, J. R., & Gaston, K. J. (2011). Mapping an urban ecosystem service: Quantifying above-ground carbon storage at a city-wide scale. Journal of Applied Ecology, 48(5), 1125–1134. https://doi.org/10.1111/j.1365-2664.2011.02021.x
Ding, Y. (2023). Assessing human influence on ecological dynamics: A Study of Anthropogenic Ecology and Impact Measurement. In Preprints.org. https://doi.org/10.20944/preprints202304.0008.v1
Duncanson, L., Liang, M., Leitold, V., Armston, J., Krishna Moorthy, S. M., Dubayah, R., Costedoat, S., Enquist, B. J., Fatoyinbo, L., Goetz, S. J., Gonzalez-Roglich, M., Merow, C., Roehrdanz, P. R., Tabor, K., & Zvoleff, A. (2023). The effectiveness of global protected areas for climate change mitigation. Nature Communications, 14(1), 1-13. https://doi.org/10.1038/s41467-023-38073-9
Endreny, T. A. (2018). Strategically growing the urban forest will improve our world. Nature Communications, 9(1), 10–12. https://doi.org/10.1038/s41467-018-03622-0
González-Ordóñez, A. I. (2024). Environmental values, environmental culture and business sustainability. Revista Científica Episteme & Praxis, 2(2), 26–33. https://doi.org/10.62451/rep.v2i2.47
Grant, S. (2016). The right tree in the right place: Using GIS to maximize the net benefits from urban forests. In Master Thesis in Geographical Information Science (Issue 54). Centre for Geographical Information Systems Lund University. http://lup.lub.lu.se/student-papers/record/8890608
Greene, D. L., Baker, H. H., & Plotkin, S. E. (2011). Reducing greenhouse gas emissions. Prepared for the Pew Center on Global Climate Change. https://www.nationalgrid.com/stories/energy-explained/what-are-greenhouse-gases
Hartini, S., Sari, D. P., & Ningrum, D. T. K. (2023). Assessment of the environmental impact of drug products using life cycle assessment: A case study in a pharmaceutical company, Semarang. Jurnal Presipitasi : Media Komunikasi Dan Pengembangan Teknik Lingkungan, 20(1), 140–152. https://doi.org/10.14710/presipitasi.v20i1.140-152
Hawkins, I., Bromwich, T., Jouffray, J.-B., White, T. B., Bull, J. W., Chang, F., Milner-Gulland, E. J., & Ermgassen, S. O. Z. (2025). The biodiversity commitments of earth’s keystone corporations: Current limitations, untapped potential, and future directions. In SocArXiv Papers. Cornell University. https://osf.io/preprints/socarxiv/k6985_v1
Igu, N. I., Ezenwenyi, J. U., Ayogu, C. N., & Okolo, N. V. (2023). Carbon storage and environmental determinants in a tropical rainforest landscape. Open Journal of Ecology, 13(04), 229–240. https://doi.org/10.4236/oje.2023.134014
IPCC. (2023). Climate change 2023: Synthesis report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. In H. L. and J. R. Core Writing Team (Ed.), Intergovernmental Panel on Climate Change, 2023. Intergovernmental Panel on Climate Change. https://doi.org/10.59327/IPCC/AR6-9789291691647
Jo, H.-K., & Ahn, T.-W. (2012). Carbon storage and uptake by deciduous tree species for urban landscape. Journal of the Korean Institute of Landscape Architecture, 40(5), 160–168. https://doi.org/10.9715/kila.2012.40.5.160
Jumiati, J., Nugraheni, P. W., & Fitrianingsih, Y. (2022). Carbon absorbing vegetation and enhancement of ecosystem benefits on residential environment. Journal of Community Based Environmental Engineering and Management, 6(1), 7–14. https://doi.org/10.23969/jcbeem.v6i1.5114
Kannenberg, S. A., Schwalm, C. R., & Anderegg, W. R. L. (2020). Ghosts of the past: How drought legacy effects shape forest functioning and carbon cycling. Ecology Letters, 23(5), 891–901. https://doi.org/10.1111/ele.13485
Karuru, S. S., Rasyid, B., & Millang, S. (2021). Carbon stock estimation on some land cover: Secondary forest, agroforestry, palm oil plantation and paddy fields. IOP Conference Series: Earth and Environmental Science, 637(1), 1-7. https://doi.org/10.1088/1755-1315/637/1/012056
Lal, R. (2015). Restoring soil quality to mitigate soil degradation. Sustainability (Switzerland), 7(5), 5875–5895. https://doi.org/10.3390/su7055875
Leijten, F., Sim, S., King, H., & Verburg, P. H. (2020). Which forests could be protected by corporate zero deforestation commitments? A spatial assessment. Environmental Research Letters, 15(6), 1-12. https://doi.org/10.1088/1748-9326/ab8158
Lin, H., Chen, Y., Zhang, H., Fu, P., & Fan, Z. (2017). Stronger cooling effects of transpiration and leaf physical traits of plants from a hot dry habitat than from a hot wet habitat. Functional Ecology, 31(12), 2202–2211. https://doi.org/10.1111/1365-2435.12923
Liu, W., Wang, X., Lu, F., & Ouyang, Z. (2015). [Regional and global estimates of carbon stocks and carbon sequestration capacity in forest ecosystems: A review]. The journal of applied ecology, 26(9), 2881–2890. https://www.researchgate.net/publication/283844279
Long, T. B. (2021). Sustainable business strategies BT - Decent work and economic growth. In W. Leal Filho, A. M. Azul, L. Brandli, A. Lange Salvia, & T. Wall (Eds.), Encyclopedia of the UN Sustainable Development Goals. Springer International Publishing. https://doi.org/10.1007/978-3-319-95867-5_49
Lugo, A. E. (2015). Forestry in the Anthropocene. Science, 349(6250), 771. https://doi.org/10.1126/science.aad2208
Malik, A. A., Puissant, J., Buckeridge, K. M., Goodall, T., Jehmlich, N., Chowdhury, S., Gweon, H. S., Peyton, J. M., Mason, K. E., van Agtmaal, M., Blaud, A., Clark, I. M., Whitaker, J., Pywell, R. F., Ostle, N., Gleixner, G., & Griffiths, R. I. (2018). Land use driven change in soil pH affects microbial carbon cycling processes. Nature Communications, 9(1), 1-10. https://doi.org/10.1038/s41467-018-05980-1
Marnaek, R. H., Setiawan, Y., Hermawan, R., & Muhdin. (2024). Development of allometric model for estimating biomass and carbon storage of hybrid Eucalyptus (E. grandis × E. urophylla) in industrial plantation forests of North Sumatra Province. Jurnal Sylva Lestari, 12(3), 948–961. https://doi.org/10.23960/jsl.v12i3.951
Mildrexler, D. J., Berner, L. T., Law, B. E., Birdsey, R. A., & Moomaw, W. R. (2020). Large trees dominate carbon storage in forests east of the cascade crest in the United States Pacific Northwest. Frontiers in Forests and Global Change, 3(11), 1–15. https://doi.org/10.3389/ffgc.2020.594274
Nam, N. T., & Thanh, N. N. (2024). The role of local communities in the conservation of cultural heritage sites: A case study of Vietnam. Journal of Asian Scientific Research, 14(2), 179–196. https://doi.org/10.55493/5003.V14I2.5057
Natale, W., Rozane, D. E., Parent, L. E., & Parent, S.-É. (2012). Soil acidity and liming in tropical fruit orchards. Revista Brasileira de Fruticultura, 34(4), 1294–1306. https://doi.org/10.1590/s0100-29452012000400041
Noor’an, R. F., Jaya, I. N. S., & Puspaningsih, N. (2016). Pendugaan perubahan stok karbon di Taman Nasional Bromo Tengger Semeru. Media Konservasi, 20(2), 177–186. https://journal.ipb.ac.id/index.php/konservasi/article/view/10883/8402
Pantera, Mosquera-Losada, M. R., Herzog, F., & den Herder, M. (2021). Agroforestry and the environment. Agroforestry Systems, 95(5), 767–774. https://doi.org/10.1007/s10457-021-00640-8
Polosakan, R., & Alhamd, L. (2014). Estimasi biomasa dan karbon tersimpan pada Pinus Merkusii Jungh . & De Vriese Di Hutan Pinus Gn . Bunder , Tn . Gn . Halimun Salak. Berita Biologi, 13(2), 115–120. https://www.neliti.com/publications/67204/estimasi-biomasa-dan-karbon-tersimpan-pada-pinus-merkusii-jungh-de-vriese-di-hut
Poorter, L., Bongers, F., Aide, T. M., Almeyda Zambrano, A. M., Balvanera, P., Becknell, J. M., Boukili, V., Brancalion, P. H. S., Broadbent, E. N., Chazdon, R. L., Craven, D., De Almeida-Cortez, J. S., Cabral, G. A. L., De Jong, B. H. J., Denslow, J. S., Dent, D. H., DeWalt, S. J., Dupuy, J. M., Durán, S. M., … Rozendaal, D. M. A. (2016). Biomass resilience of neotropical secondary forests. Nature, 530(7589), 211–214. https://doi.org/10.1038/nature16512
Pregitzer, K. S., & Euskirchen, E. S. (2004). Carbon cycling and storage in world forests: Biome patterns related to forest age. Global Change Biology, 10(12), 2052–2077. https://doi.org/10.1111/j.1365-2486.2004.00866.x
Rakatama, A., & Pandit, R. (2020). Reviewing social forestry schemes in Indonesia: Opportunities and challenges. Forest Policy and Economics, 111(1), 102052. https://doi.org/10.1016/j.forpol.2019.102052
Rodríguez-Gallego, L., Barletta, A., Cabrera, C., Kruk, C., Nin, M., & Mauttone, A. (2019). Establishing limits to agriculture and afforestation: A GIS based multi-objective approach to prevent algal blooms in a coastal lagoon. The Journal of Dynamics and Games (JDG), 6(2), 159–178. https://doi.org/10.3934/JDG.2019012
Seeberg-Elverfeldt, C. (2008). Carbon finance schemes in indonesia-empirical evidence of their impact and institutional requirements. Georg-August University. https://doi.org/10.53846/goediss-1960
Sharma, M., Jammu, S., Amarjeet Singh, I., Mushtaq, I. R., Nazir, I. N., Kumar, I. A., Simnani, I. S., Khalil, I. A., Bhat, I. R., Singh, A., Mushtaq, R., Nazir, N., Kumar, A., Simnani, S., Khalil, A., & Bhat, R. (2018). Effect of soil moisture on temperate fruit crops: A review. Journal of Pharmacognosy and Phytochemistry, 7(6), 2277–2282. https://www.researchgate.net/publication/340818633
Sharma, S., Rana, V. S., Prasad, H., Lakra, J., & Sharma, U. (2021). Appraisal of carbon capture, storage, and utilization through fruit crops. Frontiers in Environmental Science, 9(7), 1–10. https://doi.org/10.3389/fenvs.2021.700768
Shi, W.-Y., Zhu, X.-C., Zhang, F.-B., Wang, K.-B., Deng, L., & Ma, M.-G. (2020). Soil carbon biogeochemistry in arid and semiarid forests. In Applied Geochemistry with Case Studies on Geological Formations, Exploration Techniques and Environmental Issues. IntechOpen. https://doi.org/10.5772/intechopen.87951
SNI. (2019). Pengukuran dan perhitungan cadangan karbon- pengukuran lapangan untuk penaksiran cadangan karbon berbasis lahan (land-based carbon accounting). In Badan Standarisasi Nasional: Vol. SNI 7724:2. BSN.
Tacconi, L. (2018). Indonesia’s NDC bodes ill for the Paris Agreement. Nature Climate Change, 8(10), 842. https://doi.org/10.1038/s41558-018-0277-8
Tahmazov, T. (2023). Research of the total amount of aboveground biomass in forests depending on the relationship between the height and diameter of the trunk of treess. Natural Systems and Resources, 13(1), 17–23. https://doi.org/10.15688/nsr.jvolsu.2023.1.3
Tang, C. Q. (2006). Forest vegetation as related to climate and soil conditions at varying altitudes on a humid subtropical mountain, Mount Emei, Sichuan, China. Ecological Research, 21(2), 174–180. https://doi.org/10.1007/s11284-005-0106-1
Wang, X. C., Wang, S. D., & Dai, L. M. (2018). Characteristics of carbon storage and density in different layers of forest ecosystems. Russian Journal of Ecology, 49(1), 53–61. https://doi.org/10.1134/S1067413618010149
Wang, X. C., Wang, S. D., Yu, D. P., Zhou, L., & Dai, L. M. (2012). Carbon storage and density of forest ecosystems in Heilongjiang Province, China. Taiwan Journal of Forest Science, 27(3), 309–318. https://doi.org/10.7075/TJFS.201209.0309
Warner, E., Cook-Patton, S. C., Lewis, O. T., Brown, N., Koricheva, J., Eisenhauer, N., Ferlian, O., Gravel, D., Hall, J. S., Jactel, H., Mayoral, C., Meredieu, C., Messier, C., Paquette, A., Parker, W. C., Potvin, C., Reich, P. B., & Hector, A. (2023). Young mixed planted forests store more carbon than monocultures—a meta-analysis. Frontiers in Forests and Global Change, 6(November), 1–12. https://doi.org/10.3389/ffgc.2023.1226514
Wasilewska-Dębowska, W., Zienkiewicz, M., & Drozak, A. (2022). How light reactions of photosynthesis in c4 plants are optimized and protected under high light conditions. International Journal of Molecular Sciences, 23(7), 3626. https://doi.org/10.3390/ijms23073626
Wolf, K. L., Lam, S. T., McKeen, J. K., Richardson, G. R. A., Bosch, M. van den, & Bardekjian, A. C. (2020). Urban trees and human health: A scoping review. International Journal of Environmental Research and Public Health, 17(12), 1–30. https://doi.org/10.3390/ijerph17124371
Wong, K. M., Griffiths, M., Kreder, J., Raycraft, G., Brazelton, A., & Topp, C. N. (2022). Exploring cover crop phenotype-ecosystem function relationships for enhancing soil health. In North American Plant Phenotyping Network. https://doi.org/10.22541/au.166733728.82679002/v1
Yadav, A., Sahu, J., Kumar Patel, P., Chandraker, K., Dubey, A., Aayush Yadav, C., & Gendley, M. (2019). Silvopastoral system: A prototype of livestock agroforestry. The Pharma Innovation Journal, 8(2), 76–82. https://www.thepharmajournal.com/archives/?year=2019&vol=8&issue=2&ArticleId=2997
Yang, J., Chang, Y., & Yan, P. (2015). Ranking the suitability of common urban tree species for controlling PM2.5pollution. Atmospheric Pollution Research, 6(2), 267–277. https://doi.org/10.5094/APR.2015.031
Zubair, M., Yasin, G., Qazalbash, S. K., Ul Haq, A., Yaseen, M., Rahman, S. U., & Guo, W. (2022). Carbon sequestration by native tree species around the industrial areas of Southern Punjab, Pakistan. Land, 11(9), 1–12. https://doi.org/10.3390/land11091577
Downloads
Published
How to Cite
Issue
Section
Citation Check
License
Copyright (c) 2025 Edubiotik : Jurnal Pendidikan, Biologi dan Terapan

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.